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Abstract

Background: Mechanistic models of within-cell signal transduction networks can
explain how these networks integrate internal and external inputs to give rise to the
appropriate cellular response. These models can be fruitfully used in cancer cells,
whose aberrant decision-making regarding their survival or death, proliferation or
quiescence can be connected to errors in the state of nodes or edges of the signal
transduction network.

Results: Here we present a comprehensive network, and discrete dynamic model, of
signal transduction in ER+ breast cancer based on the literature of ER+, HER2+, and
PIK3CA-mutant breast cancers. The network model recapitulates known resistance
mechanisms to PI3K inhibitors and suggests other possibilities for resistance. The
model also reveals known and novel combinatorial interventions that are more
effective than PI3K inhibition alone.

Conclusions: The use of a logic-based, discrete dynamic model enables the
identification of results that are mainly due to the organization of the signaling
network, and those that also depend on the kinetics of individual events. Network-
based models such as this will play an increasing role in the rational design of high-
order therapeutic combinations.

Keywords: Breast cancer, Signal transduction networks, Network model, Dynamic
model, Resistance, Combination therapy
Background
Decades of cancer research and clinical practice have showed that durable treatment of

metastatic solid tumors is limited by the acquisition of resistance to the treatment

(Holohan et al., 2013; Garraway & Jänne, 2012; Cree & Charlton, 2017). Attaining

durable control of these tumors will likely require therapeutic combinations; i.e. com-

binations of drugs that target different key pathways within cancer cells. Our current

knowledge of drug resistance mechanisms is based on resistance to single-agent treat-

ments in cancer models and patients. The effective drug combinations employed in

the clinic today, such as the ones used in chemotherapies and other notable success
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stories, have been mainly derived through empirical testing and following many fail-

ures. Yet the prediction of drug resistance mechanisms and design of therapeutic

combinations based on scientific rationales is still an unmet need. The methods to

reach these goals will have to take into account the genomic and phenotypic diver-

sity of tumors, the variety of resistance mechanisms, and the intrinsically combina-

torial nature of the problem (Higgins & Baselga, 2011; Friedman et al., 2015;

Johannessen & Boehm, 2017; Meric-Bernstam & Mills, 2012). This makes the cur-

rently used strategies ineffective and calls for new approaches that fall under the

broad umbrella of the systems biology paradigm (Werner et al., 2014; Archer et al.,

2016).

Mechanistic network models of the signal transduction pathways underlying

cancer cells are one of the pillars of systems biology research because of their

ability to explain how these signaling cascades integrate internal and external in-

puts to give rise to a cellular response (Kumar Jolly & Levine, 2017; Tyson et al.,

2011; Aldridge et al., 2006; Wang et al., 2012; Alon, 2006; Zhang et al., 2014;

Tian et al., 2017). These properties make mechanistic network models ideally

suited to approach the problems of identifying drug resistance mechanism and

designing effective hypothesis-based drug combinations. In particular, we propose

using a subtype of network models, known as discrete dynamic models, which

have been shown to reproduce the qualitative behavior of cancer signaling

networks and are constructed solely from the regulatory interactions among the

signaling proteins and the combinatorial effect of these regulatory interactions

(e.g. positive or negative, additive or multiplicative) (Wang et al., 2012; Morris

et al., 2010; Steinway et al., 2014; Udyavar et al., 2017; Méndez-López et al.,

2017; Collombet et al., 2017).
Network models of signal transduction pathways and discrete dynamics

A signal transduction pathway consists of enzymes (e.g. kinases and phosphatases),

adaptors, and signaling molecules that integrate extracellular and intracellular informa-

tion and relay it to the transcription factors responsible for the required cellular re-

sponse. Signal transduction pathways can be represented as a network, where each

network node denotes an element of the signaling cascade (e.g., a signaling protein)

and a directed edge between two nodes means that the first node regulates the activity

of the second (target) node.

As an example, consider the simplified version of signaling through receptor tyrosine

kinases (RTKs) shown in Fig. 1. In signaling through RTKs, binding of growth factors

to the extracellular domain of RTKs induces a conformational change in the RTK,

which promotes the recruitment and binding of several signaling proteins and kinases

to its intracellular domain. Among the recruited signaling proteins are RAS and PI3K,

which are activated by the RTK, and recruit other signaling molecules. RAS activates

the kinase BRAF, which phosphorylates and activates the MAPK cascade (MEK/ERK),

which then elicits a transcriptional response. Similarly, PI3K phosphorylates the

phospholipid PIP2 into PIP3, which in turn leads to the phosphorylation of the kinase

AKT, which then activates several transcription factors. Fig. 1 shows the directed inter-

actions involved in the described sequence of events in RTK signaling, and additionally,
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Fig. 1 A logical dynamic network model of signal transduction. a Simplified network of PI3K and MAPK
signaling initiated by receptor tyrosine kinases (RTKs). b Three possible trajectories (using general
asynchronous updating) of the model constructed from the network shown in panel A and the regulatory
functions in Eq. (1), with an initial condition in which the only active node is Growth Factor (GF). c Time
course of the activity (average node state) of each node using equal update probability for all nodes (left)
or using a smaller update probability for the Transcription Factors (TF) node compared to the rest of the
nodes (right). Inset shows a zoom in of the time course for the early time steps. Note that the time courses
of the activity of several nodes overlap in panels B and C, in particular, RAS and PI3K, RAF and PIP3, and
MEK/ERK and AKT
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a directed interaction between RAS and PI3K that represents the RTK-independent

activation of PI3K by RAS.

A network representation of a signaling pathway, like the one in Fig. 1, can be

converted into a discrete dynamic network model by assigning a state variable σi and a

regulatory function fi to each node i. Each state variable σi can take a discrete number

of states which denote the level of activity of the signaling element represented by node

i, and where each level of activity is defined by its regulatory effect on the state

variables of its target nodes. The existing experimental evidence on the number of

protein conformations or post-translational modifications that yield different outcomes

points to the sufficiency of assuming a small number of states, e.g. two or three (Kapuy

et al., 2009; Burra et al., 2009). Each regulatory function fi, which can be represented

using the logical operators OR, AND, and NOT, encodes the combinatorial effect on σi
of the directed interactions acting on node i and thus depends on the state of the regu-

lators of i.

As an example, we convert the network in Fig. 1a into the simplest type of discrete

dynamic model, a logical (or Boolean) dynamic model, in which each node state

variable σi can have two states: ON (active) or OFF (inactive). We note that the OFF

state does not mean the complete absence of activity but a level of activity that is not

sufficient to regulate target nodes. For the regulatory functions of this model we use

the following logical rules
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fGrowth Factor ¼ σGrowth Factor

fRTK ¼ σGrowth Factor

fRAS ¼ σRTK

fPI3K ¼ σRTKORσRAS

fBRAF ¼ σRAS

fPIP3 ¼ σPIP3K

fMEK=ERK ¼ σBRAF

fAKT ¼ σPIP3

fTranscripton Factors ¼ σAKTANDσMEK=ERK;

ð1Þ

which are mathematical statements of the transmission of information between the

elements in RTK signaling. For example, fRTK = σGrowth Factor indicates that the RTK

becomes active in the presence of external growth factors, and fPI3K = σRTK OR σRAS in-

dicates that PI3K becomes active in the presence of either active RTK or active RAS.

Another example is fTranscription Factors = σAKT AND σMEK/ERK, which indicates that the

activation of the transcription factors we are considering (activation that may include

transcriptional as well as post-translational regulation) requires both active AKT and

active MEK/ERK. These latter rules are consistent with signaling in certain types of

lung cancer (Castellano & Downward, 2011; Lim & Counter, 2005).

In addition to regulatory functions like those in Eq. (1), a logical model must also

specify how the node state variables change with time based on these functions, that is,

we need to specify an updating scheme. Here we use the general asynchronous (GA)

updating scheme (Steinway et al., 2014; Garg et al., 2008; Saadatpour et al., 2010),

which updates the node state variables in discrete time units by the following two steps:

(i) choosing one randomly selected node j at each time step t and updating its node

state σj(t) by plugging the node states of the previous time step in the regulatory

function fj (σj(t) = fj[Σ(t − 1)], where Σ(t) = (σ1(t), σ2(t),…, σn(t)) is the network state and

encodes the state of all nodes at time t), and (ii) transferring the node state from the

previous time step of the nodes not selected in step (i) (σi(t) = σi(t − 1), i ≠ j).

To illustrate the GA updating scheme, consider the network model in Fig. 1a, the

regulatory function Eq. (1), and an initial node state Σ(t = 0) in which σGrowth Factor =

ON and the rest of node states are OFF. Note that the rule fGrowth Factor = σGrowth Factor

indicates that the state of the growth factor is sustained, which means that σGrowth Factor

will stay in its initial state (σGrowth Factor = ON in this case). Three sequences of network

states Σ(t) using GA updating, which we refer to as trajectories, are shown in Fig. 1b;

note that, because we randomly choose one node at each time step, there are many

possible trajectories. In the left-most trajectory in Fig. 1b, MAPK signaling activates be-

fore PI3K signaling, while in the right-most trajectory the activation order is reversed.

The middle trajectory shows both PI3K and MAPK signaling activating concurrently.

In all three cases the long-term behavior is the same: PI3K and MAPK signaling and

the target transcription factors are activated, that is, all the node states in Σ are ON.

Discrete dynamic models always display patterns of long-term behavior, known as dy-

namical attractors (e.g. steady states, such as the state Σ with all nodes active in this
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example), which have been found to be identifiable with stable cell fates, cell states, or

stable patterns of intracellular activity. The long-term behaviors (e.g. steady states) of

discrete dynamic models can be identified not only by simulations, but also by

alternative methods, including stable motif analysis (Zañudo & Albert, 2013; Zañudo &

Albert, 2015), network reduction (Klamt et al., 2006; Saadatpour et al., 2013), and

algebra-based methods (Veliz-Cuba et al., 2014).

The behavior of a population of cells governed by the same underlying intracellular

network can be captured by the model by performing multiple simulations and inter-

preting each trajectory as the dynamics of a single cell. The simulated population can

represent multiple types of heterogeneity by having a constitutive (in)activity of certain

nodes in certain simulations, different starting states, or different kinetic parameters

(this latter is implicitly captured by using stochastic update). To illustrate this latter

type of heterogeneity, we use the network model of Fig. 1a and Eq. (1) with the initial

state Σ(t = 0) of Fig. 1b and perform 10,000 simulations wherein we randomly select a

node with equal probability and update that node only at each time step. To capture

the population-level behavior, we use the average state of node i at time t in a set of

trajectories to define a quantity called the activity of the node (ai(t)). The activity of

each node is shown in Fig. 1c left. In addition, Fig. 1c right shows how the node activity

changes when incorporating the biological constraint that signaling events are faster

than transcriptional events, which we do by making the probability of choosing the

Transcription Factors node be smaller than that of the rest of nodes. We choose the

probability to be 5 times smaller for illustration purposes, even though the difference

in time scales is significantly larger; ~10−3-1 s for signaling events and ~101–102 min

for transcriptional and translational events (Milo et al., 2010; Milo & Phillips, 2015).

Both timecourses in Fig. 1c show how the network elements downstream of GF are ac-

tivated sequentially in the cell population (RTK first, followed by PI3K and RAS,

followed by the elements downstream of them), and how PI3K signaling and MAPK

signaling are activated at the same time, on average, in the cell population. The activity

of the outcome node of this simple network, the node Transcription Factors, lags be-

hind the activity of its two regulators, as it can only activate when both AKT and MEK/

ERK are active. The assumed slower timescale (lower update probability) assumed in

Fig. 1c further adds to the delay of the activation of Transcription Factors (TF).

A network model can also be used to simulate the effect of drug inhibition and to

identify potential resistance mechanisms. For example, the addition of an RTK inhibitor

in the model of Fig. 1a can be simulated by adding a node to the network denoting the

RTK inhibitor (RTKi), setting the logical rule of RTK to fRTK = σGrowth Factor and not

RTKi, and setting the state of the inhibitor to σRTKi = ON (either initially or at a certain

time). Adding RTKi at time = 20 causes the reversal of the increase in the activity of

both branches of signaling cascades (Fig. 2b). Ultimately, all the nodes downstream of

the RTK become inactive in all the simulated cells, yielding a steady state identical to

the initial state (t = 0 in Fig. 2b). A putative resistance mechanism can be evaluated in

the model by changing the logical rule of a node suspected to be responsible for the

observed resistance (e.g., an activating RAS mutation can be introduced by setting fRAS
= ON), and testing its effect on the rest of the network. As shown on Fig. 2c, the acti-

vating RAS mutation leads to the reactivation of both signaling pathways despite the

continued presence of the RTKi, and yields a steady state that differs from the steady
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Fig. 2 Drug inhibition and resistance mechanisms in dynamic network models. a The network model of
Fig. 1a with additional nodes denoting a RTK inhibitor (RTKi) and a MEK inhibitor (MEKi). b-d Time courses
of node activity (average node state) in response to Growth Factor (GF) in the presence of RTKi, a RAS
activating mutation, and MEKi. For panel B, we start with an initial state in which the only active node is
Growth Factor and there is no RTK inhibitor (σRTKi = OFF); we introduce the RTKi by setting σRTKi = ON for
time≥ 20. For panel C, we start with an initial state with σGF = σRTKi = ON and introduce a RAS activating
mutation by setting fRAS = ON for time≥ 20. For panel D, we start with an initial state with σGF = σRTKi = ON
and with the modified function fRAS = ON, and introduce a MEK inhibitor by setting σMEKi = ON for time≥
20. Note that the time courses of the activity of several nodes overlap in panels c and d, in particular, PI3K
and RAF, and PIP3 and MEK/ERK
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state of Fig. 1b in the state of RTK only. In other words, activating RAS mutation causes

resistance to RTK inhibitors in the model. Note that in this toy model no other activating

mutation (except RAS activation) would result in resistance to RTK inhibitors because

the outcome node TF requires both AKT and MAPK activity for its activation. The model

can be used to identify the inhibitor combinations that are able to overcome resistance.

For example, the introduction of a MEK inhibitor (MEKi) at time 20 stops the continued

activation of the outcome node TF (after a time delay) and leads to its inactivation in all

the simulations (Fig. 2d). Thus, although the PI3K pathway is still active under this condi-

tion, from the point of view of the outcome node Transcription Factors, the combined ap-

plication of RTKi and MEKi has overcome the resistance.
Resistance mechanisms to PI3K inhibitors in breast cancer

The PI3K/AKT/mTOR signaling pathway is one of the most important regulatory path-

ways of cell growth and survival in healthy and cancerous cells, as evidenced by the

finding that alterations in this pathway are one of the most common in human cancers

(Mayer & Arteaga, 2016; Zhang et al., 2017). In particular, PI3KCA (the gene coding

for the isoform α of the catalytic subunit of PI3K) is the most common altered gene in
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this pathway (mutated in ~15% of human cancers and having copy number amplifica-

tions in ~5% (Zhang et al., 2017; Zehir et al., 2017)) and is particularly important in the

context of breast cancer (mutated in ~35% and copy number amplifications in ~5%

(Ciriello et al., 2015; Koboldt et al., 2012; Stephens et al., 2012; Pereira et al., 2016)).

The importance of PI3K in cancer has led to the development of drugs that target it. A

variety of targeted drugs against PI3K are currently in clinical trials for breast cancer

(Mayer & Arteaga, 2016); they range in specificity from dual PI3K/mTOR inhibitors,

pan-PI3K inhibitors, to isoform specific inhibitors of PI3K (e.g. Alpelisib or BYL719, a

p110-alpha/PIK3CA specific inhibitor).

As a result of the development of PI3K inhibitors, there has been an increased

interest in investigating the resistance mechanisms to PI3K inhibitors in the context

of breast cancer, and several studies have been done in this direction (Costa et al.,

2015; Castel et al., 2016; Toska et al., 2017; Bosch et al., 2015; Elkabets et al., 2013; Le

et al., 2016; Vora et al., 2014; Kodack et al., 2017; Zwang et al., 2017). These studies

have elucidated several resistance mechanisms to PI3K inhibitors such as PIK3β

signaling (an alternative PI3K isoform), HER3 (ERBB3) receptor activity (which is

upstream of PI3K, and strongly activates the MAPK and PI3K pathway), mTORC1

signaling (which would otherwise be activated by the PI3K pathway), estrogen recep-

tor (ER) transcriptional regulatory activity (which provides PI3K-independent means

of promoting proliferation), and signaling through the PIM (PIM1, PIM2, and PIM3),

SGK (SGK1, SGK2, and SGK3), and PDK1 protein kinases (which act independently

of PI3K, and have functions similar to AKT). Importantly, these resistance mecha-

nisms have been found to be dependent on each other in some cases. For example,

evidence suggests that mTORC1 signaling in BYL719 resistant breast cancer cell lines

HCC1954 and JIMT1 is a consequence of the higher activity of SGK and PDK1 in

these cell lines, which is sufficient to activate mTORC1 through the phosphorylation

of TSC2 by SGK. This dependence between resistance mechanisms suggests that an

integrative approach that fully elucidates their joint and separate mechanism of action

on cell signaling and cell survival is needed for a complete understanding and to

make predictions of drug interventions that overcome the observed resistance

mechanisms.
Results
A network model of oncogenic signal transduction in ER+ breast cancer

We constructed a comprehensive discrete dynamic network model of signal transduc-

tion in ER+ breast cancer based on the literature of ER+, HER2+, and PIK3CA-mutant

breast cancers (Fig. 3). The construction of the model follows a methodology that has

been repeatedly used to model several other oncogenic and biological processes (Wang

et al., 2012; Morris et al., 2010). In brief, we perform a comprehensive review of this lit-

erature and identify the pathways, molecular components, and interactions that have

been mechanistically linked to the response or resistance to several targeted drugs. In

particular, the model incorporates the findings of resistance studies in the context of

PI3K inhibitors, mTORC inhibitors, AKT inhibitors, MAPK inhibitors, RTK inhibitors,

CDK4/6 inhibitors, and ER inhibitors/degraders, the feedback mechanisms and adap-

tive cellular responses identified during these studies, and also includes the recent



Fig. 3 Network model of oncogenic signal transduction in ER+ breast cancer. The nodes are colored
according to the pathway they are part of: RTK signaling, PI3K signaling, MAPK pathway, AKT pathway,
mTORC1 pathway, ER signaling, cell-death signaling (apoptosis) and cell-cycle regulation (proliferation).
The network also includes selected drugs of interest in the context of breast cancer: Alpelisib (PI3K
inhibitor), Ipatasertib (AKT inhibitor), Fulvestrant (ER inhibitor), Palbociclib (CDK4/6 inhibitor), Everolimus
(mTOR inhibitor), Trametinib (MEK inhibitor), and Neratinib (HER1/2 inhibitor). For clarity of the figure,
we merge certain nodes into a single node when there is no ambiguity; for example, a node denoting
a transcript is merged with the protein it codes, e.g., BCL2 and BCL2_T (for BCL2 transcript) are shown as
BCL2. The full list of network nodes is indicated in Additional File 1
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results of unbiased genome-wide screens for resistance mechanisms to PI3K inhibitors

(Costa et al., 2015; Toska et al., 2017; Elkabets et al., 2013; Le et al., 2016; Vora et al.,

2014; Kodack et al., 2017; Zwang et al., 2017; O’Reilly et al., 2006; Chandarlapaty et al.,

2011; Zhang et al., 2011; Anderson et al., 2016; Miller et al., 2010; Nahta et al., 2005;

Muellner et al., 2011; Turke et al., 2012; Will et al., 2014; Serra et al., 2011; Rodrik-

Outmezguine et al., 2011; Vasudevan et al., 2009; Chakrabarty et al., 2012; Carracedo

et al., 2008; Massarweh et al., 2008; Miller et al., 2011; Finn et al., 2009). Most of the

signaling proteins and interactions in the network have been consistently identified as

essential markers of the response or resistance to the selected targeted drugs in

multiple cell lines, in vivo mouse models, and patient tumors. For signaling proteins

and interactions that are less studied or that were more recently identified as key

players in these pathways, we also use interactions and information from other cancers

and biological processes, and when available, focus on the consensus between experi-

ments done on canonical cell lines, in particular, MCF7, T47D, and MDA-MB-415 for

ER+ breast cancer, and BT474, JIMT1, HCC1954, SKBR3, and HER2-overexpressing

MCF7 for HER2+ breast cancer.

The model consists of 51 nodes (34 Boolean and 16 multi-state nodes), of which 13

are nodes with no regulators (source nodes) that encode the initial transcriptional state

of the cell (e.g. ER, HER2) or the state of nodes which are not regulated by other

elements in the model (e.g. PIM and mTORC2). The nodes correspond to proteins,
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transcripts (8 nodes) as well as the biological outcomes proliferation and apoptosis (see

Additional File 1). The edges correspond to transcriptional regulation, epigenetic mech-

anisms, post-translational and signaling processes. The model incorporates elements of

the main signaling pathways involved in breast cancer: RTK signaling (e.g. IGF1R and

HER2/HER3), PI3K signaling (e.g. PI3K and PTEN), MAPK signaling (e.g. RAS and

MAPK), AKT signaling (e.g. AKT, PDK1, and FOXO3), mTORC1 signaling (e.g.

mTORC1, TSC, and S6K), and ER signaling (e.g. ESR1 and MYC). The model incorpo-

rates multiple negative feedback loops through which the PI3K/AKT pathway leads to

the negative regulation of RTK signaling. These six pathways converge in the survival

signaling proteins that control apoptosis (e.g. BIM, BAD, and MCL1) and proliferation

(e.g. cyclins, RB, and E2F, which form a positive feedback loop). The model describes

two biological outcomes with multi-state nodes: Proliferation (a 4-state node) and

Apoptosis (a 3-state node). In addition to the 51 nodes, we also include 7 nodes that

denote inhibitors of specific targets of interest1: Alpelisib or BYL719 (PI3K inhibitor –

p110-alpha isoform specific), Ipatasertib (AKT inhibitor), Fulvestrant (ER inhibitor –

selective estrogen receptor degrader (SERD)), Palbociclib (CDK4 and CDK6 inhibitor),

Everolimus or Sirolimus (mTOR inhibitor), Trametinib (MEK1 and MEK2 inhibitor),

and Neratinib (HER2 and EGFR inhibitor). To our knowledge, this the first comprehen-

sive network model of its kind in breast cancer.

In Additional File 1 we indicate the full name of each network node and support each

relationship and regulatory function with references. To construct the regulatory func-

tions, we start with the assumption that regulators are independent from each other

and that negative regulators are dominant. Then incorporate any available conditional

knowledge (e.g. that two regulators need to work together in order to be effective); this

information is usually related to the biology of the interaction and is distilled from the

same literature source as the interaction. Each node variable is initially assumed to have

two states (OFF/0 and ON/1), and additional states (e.g., 2) are added if justified by the

current knowledge. As an illustrative example, here we explain the regulatory functions

of AKT and ER_transcription. For simplicity, the state of each node is described using

the node name, thus AKT stands for AKT = 1, PIP3 stands for PIP3 = 1, PIP3_2 stands

for PIP3 = 2.

fAKT ¼ PIP3 or PIP3 2ð Þ and PDK1 pm or mTORC2 pmð Þ and not Ipatasertib or PIP3 2ð Þ

fER transcription ¼ ER and ESR1 or ESR1 2ð Þ
fER transcription 2 ¼ KMT2D and FOXA1 and PBX1 and ESR1 2 and ER

The regulatory function of AKT encodes the facts that PIP3 recruits AKT to the
membrane (Castel et al., 2016; CURRIE et al., 1999) and that membrane-bound PDK1

and mTORC2 phosphorylate AKT (Castel et al., 2016; Alessi et al., 1997; Sarbassov

et al., 2005). We assume that PIP3-mediated recruitment together with phosphorylation

by either PDK1 or mTORC2 is sufficient for AKT activation. Additionally, fAKT encodes

that the drug Ipatasertib inhibits AKT activity and that this inactivation can be

overcome by a high level of PIP3 (denoted PIP3_2), an assumption that is consistent

with the AKT-inhibitor literature (Chandarlapaty et al., 2011; Will et al., 2014). The

model describes the gene encoding the estrogen receptor (ER) with two levels of

activity (ESR1 and ESR1_2). Similarly, the transcriptional regulatory activity of ER has
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two levels as well (ER_transcription and ER_transcription_2). The ER_transcription rule

indicates that baseline transcriptional regulatory activity of ER (ER_transcription = 1,

given by fER_transcription) requires an ER+ cell and a baseline (ESR1 = 1) or upregulated

(ESR1 = 2) expression of the ER transcription factor (the ESR1 gene codes for ER).

Thus, the downregulation of ESR1 (ESR1 = 0, e.g., by the effect of the drug Fulvestrant)

would result in below-threshold transcriptional regulatory activity of ER (ER_transcrip-

tion = 0). Enhanced ER transcriptional regulatory activity (ER_transcription = 2, given

by fER_transcription_2) requires high expression of ESR1, a KMT2D-mediated open

chromatin state, and the participation of the co-activators FOXA1 and PBX1 (Toska

et al., 2017; Bosch et al., 2015).

We focus on the context of ER+/HER2- breast cancer, which we encode in the model

by setting the node ER to ON and HER2 and HER3_T to OFF. In addition, we start by

considering a cell state in which the source nodes IGF1R_T and PBX1 are ON (IGF1R

is a common RTK in breast cancer signaling, and the subscript T denotes the intrinsic

transcript level of IGF1R; PBX1 is a co-factor required for ER-dependent transcription).

The source nodes (i.e. nodes with no regulators) PTEN, SGK1_T, PIM1, PDK1_T, and

mTORC2, which act as resistance mechanisms to PI3K inhibitors, are OFF, and the

source nodes BIM_T and BCL2_T can be ON or OFF (BIM and BCL2 are pro- and

anti-apoptotic proteins, respectively).

In the absence of drugs, the model recapitulates a cancerous state (see Additional File

1) in which RTK, PI3K, MAPK, AKT, mTORC1, and ER signaling are active, which re-

sults in high survivability: Proliferation is high (Proliferation = 3 or 4) and Apoptosis is

low (Apoptosis = 0). In this cancerous state, high survivability is possible even if the

apoptotic proteins are active: anti-apoptotic protein BCL2 can be either ON or OFF,

and pro-apoptotic protein BIM can be ON as long as BCL2 is also ON to counteract

its effect. Thus, this state corresponds to a set of six steady states: Proliferation = 3 or 4

(caused by E2F = 2 or 3), with BCL2 = BIM =OFF, BCL2 = BIM =ON, or BCL2 = ON

and BIM =OFF. This indicates high survivability states that can be either primed (BIM

=ON) or unprimed for cell death (BIM =OFF), a commonly observed feature of cancer

cells (Sarosiek et al., 2017; Lee et al., 2012).
The network model recapitulates the response to PI3K inhibitors and predicts the degree

of survivability of different resistance mechanisms

We simulate the effect of a PI3K inhibitor on a population of cancer cells by starting from

a combination of steady states corresponding to the cancerous state and setting Alpelisib

= ON at time = 2 and maintaining it until the end of the simulation. In order to simulate

the dynamics of the network model, we use general asynchronous updating, categorize

nodes into fast or slow depending on whether the node is activated by a (fast) signaling

event or a (slow) transcriptional/translational event, and set the update probability of fast

nodes to be 5 times higher than that of slow nodes. The resulting time course of node

activities is shown in Fig. 4, where time is scaled so that the time unit is equal to the aver-

age time needed to update a slow node. The time course recapitulates the experimentally

observed response to PI3K inhibitors, in which PI3K inhibition has a quick and direct at-

tenuating effect on MAPK, AKT, and mTORC1 signaling, followed by the nuclear

localization of FOXO3, which transcriptionally upregulates the transcription factor ER



Fig. 4 Network model response to PI3K inhibitors. a Time course of node activity (based on 10,000
simulations) in response to PI3K inhibition from time = 2. Only the nodes that change during the time
course are shown. For multi-state nodes, we show the node activity for each node state and denote
each state of a multi-state node with a “_n”, where n is the state it is referring to (e.g. MAPK_1 refers to
state 1 of MAPK and MYC_2 refers to state 2 of MYC). The Apoptosisnorm and Proliferationnorm is a weighted
and normalized (between 0 and 1) measure of the state of the node Apoptosis and Proliferation, respectively.
b-c Time course of selected nodes, each representative of a different pathway. Panel C zooms in to the early
time points of Panel B
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(coded by the gene ESR1) and the pioneer factor FOXA1, which increases ER transcrip-

tional regulatory activity. The PI3K inhibition-induced fast signal transduction events

converge with the slow transcriptional events triggered by cell signaling and regulate

both apoptosis and proliferation. For example, AKT and mTORC1 are quickly inhib-

ited following PI3K inhibition, which results in the dephosphorylation and activation

the pro-apoptotic protein BAD, and in the attenuation of the translational machinery.

Meanwhile, pro-apoptotic protein BIM is transcriptionally up-regulated by FOXO3,

and cell cycle protein cyclin D is transcriptionally upregulated due to the increased

ER transcriptional regulatory activity, both of which occur later in the response to

PI3K inhibition. The end result is a marked decrease in survivability: an increase in

apoptosis (from Apoptosis = 0 to Apoptosis = 2 or 3, depending on whether BCL2

was initially active) and a decrease in proliferation (from Proliferation = 3 to Prolifer-

ation = 1, due to the early downregulation of MAPK, AKT, and mTORC1 activity)

followed by an increase (caused by the late upregulation of ER transcriptional activity)

and then stabilization at Proliferation = 2. We summarize the apoptosis and

proliferation propensity with the normalized and averaged values Apoptosisnorm and

Proliferationnorm (Additional File 1), which in the current simulations take the initial

values Apoptosisnorm = 0.00 and Proliferationnorm = 0.50, and the final values

Apoptosisnorm = 0.70 and Proliferationnorm = 0.25.
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We next test whether two recently discovered resistance mechanisms to PI3K inhibi-

tors, PIM1/2/3 and SGK1/PDK1, increase survivability in response to PI3K inhibition

in our network model. We start with an initial population of cells in the cancerous state

and set either PIM =ON (which stands for any of the PIM family members) or PDK1

= SGK1_T = SGK1 =ON, and simulate the system as in the previous case (Alpelisib =

ON at time = 2). The resulting time course of node activities is shown in Fig. 5b-c. Both

PIM and SGK1 act as resistance mechanisms to PI3K inhibitors in the model, as

evidenced by a decrease in Apoptosis (from Apoptosisnorm = 0.70 in case of PI3K

inhibitors only to 0.00/0.25 in the PIM/SGK1 cases) and an increase/lack of change in

Proliferation (from Proliferationnorm = 0.25 to 0.50/0.25 in the PIM/SGK1 cases). A

closer look at the network and the interactions of PIM and SGK1 (Fig. 5a) shows that

they share most of the downstream targets of AKT, and thus, can compensate for the

loss of AKT activity due to PI3K inhibition. In particular, PIM shares four out of the six
Fig. 5 Illustration of PIM and SGK1-mediated resistance to PI3K inhibitors. a The relevant subnetwork of the
full network shown in Fig. 3. PIM shares four targets of AKT (compare blue and red edges), while SGK1
shares two (green edges). Their post-translational regulation is different from AKT’s: SGK1 is activated by
different pools of PDK1 and mTORC2 than AKT, while PIM is constitutively active. b Time course of node
activity in response to PI3K inhibition at time = 2 in cells with full activity of PIM (top) or reduced PIM
activity (10% chance of inactive PIM at any time step) (bottom). c Time course of node activity in response
to PI3K inhibition at time = 2 in cells with constitutive PDK1 and SGK1 activity. The symbol legend applies
to both B and C
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AKT targets in the model (PIM does not phosphorylate TSC nor KMT2D) while SGK1

shares two AKT targets. The fact that SGK1 does not regulate the activity of pro-

apoptotic protein BAD and the cyclin dependent kinase inhibitors p21/p27 is the rea-

son why the model predicts that the PIM proteins are a stronger resistance mechanism

to PI3K inhibitors compared to PDK1/SGK1. We note that this prediction depends on

the relative ability of PIM and SGK1 to phosphorylate their downstream targets. To il-

lustrate this point, Fig. 5b bottom shows the resulting time course for PIM if it is 10%

less efficient than AKT on its downstream targets, (which we implement by setting

PIM =OFF with a probability of 10% at every time step). While fully effective PIM

maintained the cancerous mTORC1, Apoptosisnorm and Proliferationnorm values despite

PI3K inhibition, in the case of the 90% effective PIM there is a decrease in the average

level of mTORC1 and Proliferationnorm and an increase in Apoptosisnorm, closer to the

result obtained for SGK1.
The network model predicts MAPK, FOXO3, AKT, MYC, and cell cycle proteins as resist-

ance mechanisms to PI3K inhibitors

In order to identify new resistance mechanism to PI3K inhibitors, we test every possible

single and double node constitutive activation or inactivation (used in conjunction with

PI3K inhibition), using an analogous procedure as in the case of PIM and SGK1/PDK1.

Table 1 and Table 2 show the top node interventions that increase survivability (as

measured by Apoptosisnorm and Proliferationnorm) compared to the control case of

PI3K inhibition with no node interventions. For the case of single node interventions,

the model recapitulates the known resistance mechanisms to PI3K inhibitors: PIM,

SGK1, mTORC1 (mTORC1 =ON, TSC =OFF, PRAS40 = OFF, or translation = ON),

and HER2/HER3 (HER2/HER3 = 2), which lead to a decrease in the apoptosis propen-

sity and increase in the proliferation propensity. We identify several additional resist-

ance mechanisms: MAPK (MAPK = 1 or 2, where level 2 is the state associated with

HER2/HER3 activity), which partially or fully block apoptosis, AKT (AKT = ON),

which fully blocks apoptosis and restores the PI3K-inhibitor-free proliferation levels,

and FOXO3 (FOXO3 =OFF or FOXO3_Ub =ON), which leads to a decrease in both

the apoptosis and proliferation propensity. We also identify several resistance mecha-

nisms that involve cell cycle proteins, namely, cyclin E and CDK 2 (cycE/CDK2 = ON),

p21/p27 (p21/p27 = OFF), E2F (E2F = 3), Rb (pRb = 3), or proteins of the mitochondrial

apoptosis pathway, namely BIM (BIM =OFF), BAD (BAD =OFF), MCL1 (MCL1 =

ON), and BCL2 (BCL2 =ON). Several of these resistance mechanisms are supported by

experimental evidence (Rb, MCL1, and BAD) or are consistent with clinical observa-

tions (AKT) (Le et al., 2016; Vora et al., 2014; Zwang et al., 2017; Anderson et al.,

2016).

For the case of double-node resistance mechanisms, and excluding those that target the

apoptosis and proliferation pathways, we identify several new resistance mechanisms in-

volving the AKT, MAPK, mTORC1, or ER pathways (Table 2). For example, MAPK = 1

combined with SGK1 = 1 fully blocks apoptosis in the model, and MAPK = 2 together

with high ER activity (ER_transcription = 2 or MYC = 2) restores proliferation to its PI3K-

inhibitor-free level (Proliferationnorm = 0.50) and fully blocks apoptosis. Other examples

are MAPK = 1 combined with mTORC1-activating elements (mTORC1 = 1, TSC = 0,



Table 1 Single-node resistance mechanisms to PI3K inhibitors ordered by their effect on Apoptosis

Perturbation Apoptosisnorm Proliferationnorm Mechanism

PI3K = 1,2; PIP3 = 1,2 0.00 0.50 PI3K

AKT = 1 0.00 0.50 AKT

HER2/HER3 = 2 0.00 0.50 RTK

PIM = 1 0.00 0.50 AKT

MAPK = 1 0.25 0.25 MAPK

MAPK = 2 0.00 0.25 MAPK

BIM = 0 0.25 0.25 Apoptosis

BAD = 0 0.25 0.25 Apoptosis

SGK1 = 1 0.25 0.25 AKT

FOXO3 = 0, FOXO3_Ub = 1 0.33 0.13 AKT

mTORC1 = 1 0.38 0.50 mTORC1

translation = 1 0.38 0.50 mTORC1

TSC = 0 0.38 0.50 mTORC1

PRAS40 = 0 0.38 0.50 mTORC1

MCL1 = 1 0.38 0.25 Apoptosis

BCL2 = 1 0.50 0.25 Apoptosis

pRb = 3 0.70 0.50 Proliferation

E2F = 3 0.70 0.50 Proliferation

cycE_CDK2 = 1 0.70 0.50 Proliferation

p21_p27 = 0 0.70 0.49 Proliferation

The sustained state indicated in the first column yields a decrease in Apoptosisnorm from 0.7 and/or an increase in
Proliferationnorm from 0.25, which are the activities of these nodes with only PI3K inhibition. Certain node perturbations
that are equivalent in the network sense and lead to the same effect are grouped; specifically, PIP3 = 1 or 2 with PI3K = 1
or 2; FOXO3_Ub = ON with FOXO3 = OFF
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PRAS40 = 0), which restore proliferation to its original level (Proliferationnorm = 0.50) and

also lower apoptosis significantly (Apoptosisnorm = 0.13), and FOXO3= 1 together with

MAPK = 2, which blocks apoptosis and restores proliferation (Proliferationnorm = 0.50).
The network model predicts that the inhibition of the MYC-CDK4/6 axis of cell-cycle

regulation and of mTORC1 synergizes with PI3K inhibitors

We next asked what single or combinatorial interventions would further sensitize cells to

PI3K inhibition, i.e. yield an increased apoptosis propensity or decreased proliferation pro-

pensity compared to PI3K inhibition alone. Table 3 shows the top interventions that

synergize with PI3K inhibition, which in this case are all single-node interventions. Inter-

ventions that involve the inhibition of ER activity (e.g. Fulvestrant = 1, ER_transcription =

0, FOXA1 = 0, PBX1 = 0, KMT2D = 0) have a high anti-proliferative and apoptotic effect

(Proliferationnorm = 0.00 − 0.13 and Apoptosisnorm = 0.83). Indeed, ER activity is up-

regulated in response to PI3K inhibition and attenuates drug response. The synergistic ef-

fect of PI3K and ER inhibition has been previously reported (Bosch et al., 2015) and is

currently being explored in multiple clinical trials (Mayer & Arteaga, 2016). The model

predicts a set of combinatorial interventions that involve inhibition of PI3K and the

MYC-CDK4/6 axis of cell-cycle regulation (e.g. Palbociclib = 1, MYC = 0, cyclinD = 0,

CDK4/6 = 0, pRb = 0), which completely block proliferation (Proliferationnorm = 0.00) and

maintain the apoptosis-inducing effect of PI3K inhibition (Apoptosisnorm = 0.70). The



Table 2 Double-node resistance mechanisms to PI3K inhibitors ordered by their effect on Apoptosis

Perturbation 1 Perturbation 2 Apoptosisnorm Proliferationnorm Mechanism 1 Mechanism 2

MAPK = 2 MYC = 2 0.00 0.62 MAPK ER

MAPK = 2 ER_transcription = 2 0.00 0.55 MAPK ER

MAPK = 2 FOXO3 = 1, FOXO3_Ub = 0 0.00 0.50 MAPK AKT

MAPK = 1 SGK1 = 1 0.00 0.25 MAPK AKT

HER2 = 1 HER3 = 2 0.06 0.51 RTK RTK

MAPK = 1 FOXO3 = 0, FOXO3_Ub = 1 0.08 0.13 MAPK AKT

SGK1 = 1 ER_transcription = 2 0.11 0.55 AKT ER

MAPK = 1 translation = 1 0.13 0.50 MAPK mTORC1

MAPK = 1 TSC = 0 0.13 0.50 MAPK mTORC1

MAPK = 1 PRAS40 = 0 0.13 0.50 MAPK mTORC1

MAPK = 1 mTORC1 = 1 0.13 0.50 MAPK mTORC1

SGK1 = 1 MYC = 2 0.25 0.63 AKT ER

SGK1 = 1 FOXO3 = 1 0.37 0.50 AKT AKT

S6K = 1 EIF4F = 1 0.38 0.50 mTORC1 mTORC1

HER2 = 1 ER_transcription = 2 0.49 0.69 RTK ER

The sustained states of the two nodes indicated in the first two columns yield a decrease in Apoptosisnorm from 0.7 and/
or an increase in Proliferationnorm from 0.25 (the activities of these nodes under PI3K inhibition alone). Perturbations that
involve nodes of the apoptosis or proliferation pathway are not included in this table. Certain node perturbations that
are equivalent in the network sense and lead to the same effect are grouped
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synergistic effect of PI3K and CDK4/6 inhibition was previously reported (Vora et al.,

2014); the rest of the predictions are novel. Mechanistically, these interventions act by

blocking the proliferative effect of ER, which makes their anti-proliferative effect as

potent as the combination of PI3K and ER inhibitors. A second novel set of combina-

torial interventions involve inhibition of PI3K and mTORC1 (e.g. Everolimus = 1,

mTORC1 = 0, S6K = 0, and EIF4F = 0), which is predicted to modestly increase the

pro-apoptotic effect of PI3K inhibition (Apoptosisnorm = 0.73) and maintain its anti-

proliferative effect (Proliferationnorm = 0.25). The synergistic effect of PI3K and

mTORC1 inhibition has been documented in MCF7-derived xenografts (Elkabets et al.,

2013), but the mechanism has not been identified. Indeed, PI3K inhibition results in

mTORC1 downregulation. We find that this combinatorial effect on apoptosis depends

on the relative timing of the start of the mTORC1 and PI3K inhibition. Early addition of

mTORC1 leads to the inhibition of MCL1, which primes the cells for PI3K-inhibitor-

induced apoptosis (see Additional file 2: Table S1), and the maximum apoptosis is

the same as when MCL1 is initially set to OFF. Thus, the model predicts that

MCL1 inhibition is the mechanism through which PI3K and mTORC1 inhibition

are synergistic, and combined PI3K and MCL1 inhibition can mimic the effect of

combined PI3K and mTORC1 inhibitors

Discussion
Network models excel in both aspects of model utility: the integration and interpret-

ation of existing knowledge, and the generation of novel predictions. Our network

model (Fig. 3) unites information from numerous studies, reproduces several key ex-

perimental and clinical outcomes (Table 4), and visualizes the inter-relationships among

various pathways and processes. The overlay of the usually-defined pathways (marked

by separate colors) on the signal transduction network that starts with receptor tyrosine



Table 3 Single-node interventions which in combination with PI3K inhibitors yield an increase in
Apoptosisnorm from 0.7 and/or a decrease in Proliferationnorm from 0.25

Perturbation Apoptosisnorm Proliferationnorm Mechanism

BCL2 = 0 1.00 0.25 Apoptosis

ER_transcription = 0 0.84 0.00 ER

ER_transcription < 2 0.84 0.13 ER

Fulvestrant = 1 0.83 0.00 ER

KMT2D = 0 0.83 0.13 ER

FOXA1 = 0 0.83 0.13 ER

BCL2_T = 0 0.81 0.25 Apoptosis

MCL1 = 0 0.75 0.25 Apoptosis

mTORC1 = 0 0.74 0.25 mTORC1

Everolimus = 1 0.73 0.25 mTORC1

cycD_CDK46 = 0 0.70 0.00 Proliferation

Palbociclib = 1 0.70 0.00 Proliferation

pRb = 0 0.70 0.00 Proliferation

E2F = 0 0.70 0.00 Proliferation

MYC = 0 0.70 0.00 ER

pRb < 2 0.70 0.13 Proliferation

cycD_CDK46 < 2 0.70 0.13 Proliferation

MYC < 2 0.70 0.13 ER

FOXO3 = 0 0.33 0.13 AKT

The entries are ordered by their effect on Apoptosis. Certain node perturbations that are equivalent in the network sense
and lead to the same effect are grouped, specifically: ESR1 = OFF, ER = OFF, and ER_transcription = 0; ESR1 < 2 and
ER_transcription < 2; PBX1 = OFF and FOXA1 = OFF; translation = OFF, S6K=OFF, EIF4F=OFF, and mTORC1 = OFF; cyclinD =
0, CDK4/6 = OFF, and cycD_CDK4/6 = 0; cyclinD < 2, and cycD_CDK4/6 < 2; FOXO3_Ub = ON and FOXO3 = OFF
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kinases and ends with two phenotypic outcomes reveals that these pathways cover a

variety of subgraphs of the full network, from linear cascades (such as RAS-MAPK) to

bow-tie structured neighborhoods of a node (such as ER signaling) and to subgraphs

wherein negative regulation or feedback plays an important role. The inter-regulation

among subgraphs is also substantial, and biologically significant. To better illustrate this

point, in Fig. 6a we represent each the seven pathways relevant to ER+, PI3K mutant

breast cancer as single nodes and indicate the aggregated relationships between them.

These relationships summarize one or multiple logically consistent paths between the

pathways. For example, mTORC1-induced protein translation, which leads to the

increased activity of the anti-apoptotic protein MCL1, yields an overall negative regula-

tion between the mTORC1 pathway (orange rectangle) and the apoptosis pathway

(green rectangle). The positive effect of the AKT pathway on the mTORC1 pathway

summarizes AKT and PIM’s inhibition of PRAS40, as well as AKT and SGK1’s inhib-

ition of TSC; both PRAS40 and TSC are inhibitors of mTORC1.

AKT inhibits ER signaling through downregulating the histone methyltransferase

KMTD and by its inhibition of FOXO3, which would otherwise activate ER. This nega-

tive edge stands out from and opposes an otherwise sign-consistent meta-network,

wherein the five upstream pathways have positive inter-regulation and all favor prolifer-

ation and/or disfavor apoptosis. In ER+, PI3K mutant breast cancer cells, this negative

edge dampens (but does not block) ER signaling, and all four other pathways are active;

yielding the collective effect of a significant proliferation propensity and lack of



Table 4 Illustration of experimental and clinical outcomes in ER+ and HER2+ breast cancer
reproduced by the model

Experimental or clinical outcome References

Drug inhibition of MEK in HER2+ breast cancer cells leads
to increased HER2/HER3 heterodimer formation and higher
PI3K activation

(Turke et al., 2012)

High HER3 expression induces resistance to PI3K inhibitors,
which is overcome by HER3 blockade, in HER2-amplified
and/or PIK3CA-mutant breast cancer cell lines and brain
metastases of mouse xenografts.

((Kodack et al., 2017);
(Chakrabarty et al., 2012))

High PIM expression is a resistance mechanism to PI3K
inhibitors in ER+ (PIM1/2/3) and HER2+ (PIM2) breast
cancer cell lines. High PIM1/3 expression is observed in
biopsies of ER+ human tumors treated with PI3K inhibitors.

((Le et al., 2016);
(Zwang et al., 2017))

High PDK1/SGK1 expression is a resistance mechanism to
PI3K inhibitors in HER2+ breast cancer cell lines and mouse
xenografts tumors. High SGK1 expression and activity in
breast cancer tumor samples causes intrinsic resistance to
PI3K inhibitors.

(Castel et al., 2016)

High PDK1 and AKT2 expression are putative resistance
mechanisms to PI3K inhibitors; they are observed in biopsies
of ER+ human tumors treated with PI3K inhibitors.

(Le et al., 2016)

Inhibition of PI3K induces a rapid downregulation of MAPK
signaling and induction of apoptosis in ER+ and HER2+ breast
cancer cell lines and mouse xenograft tumors. In HER2+ breast
cancer cell lines, MAPK activity is reactivated following the
induction of RTKs.

((Costa et al., 2015);
(Will et al., 2014);
(Ebi et al., 2013))

Inhibition of AKT (directly by AKT inhibitors or indirectly by
mTOR or PI3K inhibitors) induces the activity of the transcription
factor FOXO3, which upregulates a shared set of RTKs, including
HER3, IGF1R, in HER2+ breast cancer cell lines and mouse
xenografts tumors.

((Chandarlapaty et al., 2011);
(Rodrik-Outmezguine et al., 2011);
(Chakrabarty et al., 2012))

Inhibition of PI3K in ER+ breast cancer cell lines induces the
transcription factor activity of FOXO3, which binds the promoters
of ESR1 and HER3, and upregulates their expression. The
upregulation of ESR1 expression in response to PI3K inhibitors has
also been observed in ER+ mouse xenograft tumors and ER+
human breast cancer tumor biopsies.

((Bosch et al., 2015);
(Kodack et al., 2017))

As a general rule, the model can only use information/assumptions about edge (direct) effects (e.g. PIM inhibits PRAS40)
and all network level effects (e.g. how a drug influences apoptosis/proliferation) are emergent properties of the totality
of these interactions
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apoptosis propensity. In case of drug inhibition of PI3K, four pathways (PI3K, MAPK,

AKT, mTORC1) are inactivated, and consequently the break on ER signaling is released

(Fig. 6a). The overall effect is a significant apoptosis propensity and a low (but non-

zero) proliferation propensity. While the quantification of the two biological outcomes

depends on specific model and implementation details, the main message is clearly

encapsulated in the network: PI3K inhibition does not eliminate all the proliferation-

inducing, apoptosis-resisting activity in the network. Our model provides specific pre-

dictions on what additional interventions would yield a significant improvement over

PI3K inhibition alone. The targets of these predicted interventions lie in the ER signal-

ing, mTORC1, cell cycle and apoptosis pathways; their names and the nature of their

control (inhibition or activation) is also indicated in Fig. 6a. Our finding that multiple

combinatorial interventions are effective enables the selection of those that are most ef-

fective drug targets and minimize toxicity and side effects.

A novel prediction of the model is that PI3K + CDK4/6 inhibition is a very effective

combination treatment because of its ability to both induce cancer cell death and cell



ba

Fig. 6 Meta-network illustrating synergistic interventions and resistance mechanisms to PI3K inhibitors. The
colored rectangles correspond to the pathways introduced in Fig. 3, and the edges between them
represent aggregated regulatory relationships between pathways. In these relationships, and also when
referring to a pathway as active or inactive, we focus on the index (named) member of the pathway. Thus,
when saying that the mTORC1 pathway is active we mean that mTORC1, EIF4F and S6K are active, TSC and
PRAS40 are inactive. Thick continuous lines indicate active pathways/interactions, thick and dashed lines
represent partially active pathways/interactions, thin and dashed lines mean inactive pathways/interactions.
For the node names indicated inside the colored rectangles, blue indicates inhibition/inactivity and red
indicates increased activity. a Signaling pathway activity in response to PI3K inhibition. ER signaling is still
active (partly due to the release of its inhibition by AKT), while the apoptosis and proliferation pathways are
partially active. Inhibition of the nodes indicated in blue font or constitutive activity of Rb is predicted to
have a synergistic effect with PI3K inhibition. b Resistance mechanisms to PI3K inhibitors. Sustained activity
of the nodes indicated with red font inside each pathway can (at least partially) restore the pathway’s
activation and obstruct the effectiveness of PI3K inhibition. Sustained inactivity of the nodes indicated
with blue font can have a similar effect. For simplicity, the HER2/HER3 resistance mechanism is not included
in a separate RTK module but as part of the pathways activated by HER2/HER3, namely MAPK and PI3K
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cycle arrest by suppressing two parallel proliferation regulator complexes (cyclin E and

CDK2, and cyclin D and CDK4/6). So far there are few studies of the combined effect

of PI3K inhibitors and CDK4/6 inhibitors (Vora et al., 2014; O’Leary et al., 2016), and

the ongoing clinical trials all include ER inhibitors simultaneously with both PI3K and

CDK4/6 inhibitors (Mayer & Arteaga, 2016; O’Leary et al., 2016). The model predicts

that the combination of PI3K and CDK4/6 inhibitors can be as effective as the combin-

ation of PI3K and ER inhibitors, and that the addition of CDK4/6 inhibitors to the

latter combination does not further increase its effectiveness. Given that resistance to

ER inhibitors can be overcome by CDK4/6 inhibitors (Finn et al., 2009) and that targets

of CDK4/6 inhibitors are known resistance mechanisms to ER inhibitors (Hui et al.,

2002; Musgrove & Sutherland, 2009), the model predictions suggests that PI3K inhibi-

tors + ER inhibitor followed by PI3K inhibitors + CDK4/6 inhibitors after acquisition

of resistance is a better strategy than combined PI3K + ER + CDK4/6 inhibitors.

The network of inter-relationships among pathways can also be used to interpret the

existing information and new predictions on potential resistance mechanisms to PI3K

inhibition in PI3KCA mutant, ER+ breast cancer (Fig. 6b). Broadly speaking, any mech-

anism that yields the restoration of activity in the PI3K, MAPK, AKT or mTORC1

pathways, or increased activity of the ER pathway, will restore the proliferation-

inducing and/or apoptosis-opposing effects of these pathways, and will yield a decrease

in the effectiveness of PI3K inhibitors. For example, a mechanism that would partially

restore PI3K activity or PIP3 levels (for example by a loss of function alterations in
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PTEN (Juric et al., 2015), could lead to the restoration of the PI3K→AKT and PI3K→

MAPK edges in Fig. 6b and thus reverse the effects of PI3K inhibition. Constitutive ac-

tivity of AKT, PIM or SGK1, or inhibition of FOXO3, would at least partially restore

the four outgoing edges of the AKT pathway. While one of these edges is to dampen

ER signaling, the other three will lead to a decreased apoptosis propensity and in-

creased proliferation propensity. Inspecting the multitude of potential resistance mech-

anisms (indicated by color-coded node names inside each pathway symbol in Fig. 6b),

those in the PI3K, AKT and mTORC1 pathways may be categorized as pathway reacti-

vation, if we consider the union of these three, i.e. PI3K/AKT/mTORC1, as the index

pathway. Constitutive ER transcriptional regulatory activity is an example of pathway

bypass: it leads to cell cycle progression and activates the anti-apoptotic protein BCL2.

Constitutive activity of the MAPK pathway, a model-predicted resistance mechanism,

resembles pathway bypass in that it inhibits FOXO3, which would otherwise be accom-

plished by AKT, but it also overlaps the index pathway through its activation of

mTORC1. The model predicts that two different combinations of MAPK and FOXO3

activity (FOXO3 =ON and MAPK = 2 or FOXO3 =OFF and MAPK = 1) can both act

as resistance mechanisms to PI3K inhibitors. An analysis of the elements regulated by

MAPK and FOXO3 reveals that this happens because two normally opposing effects

are allowed to co-occur. In the FOXO3 =ON and MAPK = 2 case, MAPK’s regular in-

hibition of FOXO3 is blocked, thus this combination yields the proliferative effect of

FOXO3 = 1 but a lesser pro-apoptotic effect (due to MAPK = 2). In the FOXO3 =OFF,

MAPK = 1 case the apoptosis propensity is decreased because MAPK = 1 inhibits BAD.

Here we focused on PI3KCA mutant breast cancer and targeted PI3K inhibition,

which is showing promising results in clinical trials. Our network modeling framework

can be used or adapted to answer a broader set of questions. For example, we can con-

sider mutants that have one of the model-identified resistance mechanisms, determine

the drugs that overcome the resistance, and identify the most effective combinatorial

therapies. An example of such a prediction is that patients with activating genetic alter-

ations in PIM would greatly benefit from the combination of PI3K inhibitors with PIM

inhibitors (as one would expect) or the combination of ER and mTOR inhibitors.

Although we focused on ER+/HER2- breast cancer, the pathways and mechanisms of

the HER2+ subtype are included in the model. Indeed, HER2/HER3 appears as a resist-

ance mechanism to PI3K inhibition and the model recapitulates several resistance

mechanisms observed in HER2+ breast cancer (Table 4). The model can be expanded

to incorporate additional resistance mechanisms relevant to HER2+ breast cancer (e.g.

the FGFR signaling pathway in the context of estrogen receptor degraders (Turner

et al., 2010; André & Cortés, 2015; Mao et al., 2017)).

Certain predictions of the model rely on considerations that go beyond the network

structure, for example timing. The model predicts a non-monotonic decrease in prolif-

eration in response to PI3K inhibition (Fig. 3). This is due to the convergence of fast

signal transduction events that decrease proliferation with the slow ER-driven tran-

scriptional events that increase it. Timing also plays a key role in the predicted syner-

gistic effect on apoptosis induction of mTORC1 inhibition followed by PI3K inhibition.

This is because mTORC1 inhibition leads to the inhibition of MCL1, which primes the

cells for PI3K-inhibitor-induced apoptosis (see Additional file 2: Table S1). The obser-

vation that the timing of drugs can prime cells for apoptosis and yield drug synergy is
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consistent with previous work showing a similar effect in triple-negative breast cancer

(Lee et al., 2012).

Even though the model includes several of the pathways and signaling proteins im-

portant in ER+, HER2+, and PIK3CA-mutant breast cancer, it is not complete. The

model, for example, does not include the DNA damage pathway, signaling through

other RTKs such as FGFR and EGFR, the Wnt pathway, and the TGFβ pathway.

Despite the role of these pathways in apoptosis and proliferation of breast cancer cells,

we did not include them in the model either because the literature we explored pointed

to them behaving very similarly to a pathway included in the model (e.g., in the case of

EGFR and FGFR), or because we were not able to find strong evidence linking them to

the response/resistance to the targeted drugs studied (e.g., in the case of the DNA dam-

age pathway). We expect that extending the model to account for the effect of other

inhibitors (e.g. PARP inhibitors) or other oncogenic processes (e.g. the epithelial-to-

mesenchymal transition) would necessitate the inclusion of additional pathways. Note

that not including these pathways in the current model is not equivalent to the as-

sumption that they do not play a role in the resistance to the studied targeted therapies;

rather, it is a reflection of the expectation that their potential role is mediated through

one of the included signaling proteins (or an element of their pathways).

The network model we present in this work, just like any mathematical model, is not

final and definitive (Box, 1976; Box, 1979). For several regulatory functions there was

insufficient evidence regarding the aggregated effect of multiple regulators; in these

cases, we tested several alternatives before settling on the function that most faithfully

recapitulated biological results. The model can be improved by experimental elucida-

tion of these regulatory functions and by experimental testing of the model’s predic-

tions. Any discrepancies between the model and experiments would lead us to test

changes to the model’s assumptions that resolve the discrepancies while keeping the

cases of agreement intact. The improved model would give further predictions that

could be tested experimentally, and so on, thus completing the model/experiment cycle

inherent to any modeling approach.

Conclusions
The breast cancer network model we present in this work integrates the current know-

ledge of PIK3CA-mutant, ER+ breast cancers, and uses it to identify a set of elements

that may eventually be exploited in high-order therapeutic combinations to achieve a

more durable control of breast cancer. The model’s predictions will serve as a basis for

guiding and interpreting drug resistance and drug combination studies in ER+ breast

cancer. The model can be straightforwardly adapted to HER2+ breast cancer; it already

recapitulates multiple outcomes in this setting. The model can be expanded to incorp-

orate multiple additional genetic alterations observed in breast cancer patient cohorts

(Koboldt et al., 2012; Pereira et al., 2016; Wagle et al., 2017; Cohen et al., 2017) by

appropriately introducing these alterations into the model (e.g., as a node activation or

inactivation). The inclusion of the most probable intrinsic or acquired resistance

mechanisms to a treatment, informed by pre-, on- and post-treatment genetic

characterization of tumors (Cohen et al., 2017), will allow the identification and ranking

of the combinatorial interventions that are effective even in the presence of tumor drug

resistance. We expect that experimentally and clinically validated network models
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similar to the one presented here will become an integral part of precision medicine,

and will be able to identify successful combinatorial therapies in tumor types and sub-

types of interest.

Methods
Model simulations

The simulations of the discrete network models were done using the BooleanDynamic-

Modeling Java library, which is freely available on GitHub (https://github.com/jgtz/Boo-

leanDynamicModeling). To simulate multi-level nodes, we use a Boolean variable to

denote each level greater than 1. For example, for a 3-level node with states 0, 1, and 2,

we have 2 variables (Node and Node_2), and for a 4-level node we have 3 variables (Node,

Node_2, and Node_3). The regulatory functions of all the nodes are indicated and ex-

plained in Additional File 1. We perform 10,000 simulations in each modeled scenario.

The number of time steps are 75 (for the simulations in Figs. Fig. 4 and Fig. 5), 100 (for

the simulations in Tables 1 and 3), and up to 120 (for the simulations in Additional file 2:

Table S1) depending on the scenario. The code used to simulate the model is available on

GitHub (https://github.com/jgtz/BreastCancerModel).

Attractor-finding in discrete network models

To attractors of the model were identified using the StableMotifs Java library, which is

freely available on Github (https://github.com/jgtz/StableMotifs) and implements the

attractor-finding method based on stable motif analysis (Zañudo & Albert, 2013; Zañudo

& Albert, 2015), as has been previously described (Steinway et al., 2014). Stable motif ana-

lysis can find the attractors of a logical model by identifying the model’s stable motifs, a

set of nodes and their node states with certain identifiable topological (intersecting di-

rected cycles) and dynamical properties (partial steady states), which uniquely determine

the attractors of the model (Zañudo & Albert, 2013; Zañudo & Albert, 2015).

The full names of the abbreviated node names in Fig. 3 and thereafter are indicated

in Additional File 1.

Endnotes
1Here we use the term “inhibitor” to refer to drugs that target and inhibit an element

regardless of the specific mechanism of action.
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